Compact Riemannian manifolds with positive curvature operators
نویسندگان
چکیده
منابع مشابه
Compact Riemannian Manifolds with Positive Curvature Operators
M is said to have positive curvature operators if the eigenvalues of Z are positive at each point p € M. Meyer used the theory of harmonic forms to prove that a compact oriented n-dimensional Riemannian manifold with positive curvature operators must have the real homology of an n-dimensional sphere [GM, Proposition 2.9]. Using the theory of minimal two-spheres, we will outline a proof of the f...
متن کاملRiemannian Manifolds with Positive Sectional Curvature
It is fair to say that Riemannian geometry started with Gauss’s famous ”Disquisitiones generales” from 1827 in which one finds a rigorous discussion of what we now call the Gauss curvature of a surface. Much has been written about the importance and influence of this paper, see in particular the article [Do] by P.Dombrowski for a careful discussion of its contents and influence during that time...
متن کاملThe Global Geometry of Riemannian Manifolds with Commuting Curvature Operators
We give manifolds whose Riemann curvature operators commute, i.e. which satisfy R(x1, x2)R(x3, x4) = R(x3, x4)R(x1, x2) for all tangent vectors xi in both the Riemannian and the higher signature settings. These manifolds have global geometric phenomena which are quite different for higher signature manifolds than they are for Riemannian manifolds. Our focus is on global properties; questions of...
متن کاملExamples of Riemannian manifolds with positive curvature almost everywhere
We show that the unit tangent bundle of S4 and a real cohomology CP 3 admit Riemannian metrics with positive sectional curvature almost everywhere. These are the only examples so far with positive curvature almost everywhere that are not also known to admit positive curvature. AMS Classi cation numbers Primary: 53C20 Secondary: 53C20, 58B20, 58G30
متن کاملBounded Curvature Closure of the Set of Compact Riemannian Manifolds
In this note we consider the set of metric spaces which are the limits with respect to Lipschitz distance dL of compact connected C°°-Riemannian manifolds of curvature uniformly bounded above and below. We call this set "bounded curvature closure" (BCC). It is well known that the limit spaces need not be C-Riemannian manifolds [P, Example 1.8]. Hence, the problem arising is to give a geometrica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1986
ISSN: 0273-0979
DOI: 10.1090/s0273-0979-1986-15440-6